Origami Nanofabrication of Three-Dimensional Electrochemical Energy Storage Devices
نویسندگان
چکیده
The Nanostructured OrigamiTM 3D Fabrication and Assembly Process was developed as a novel method of creating three-dimensional (3D) nanostructured devices using twodimensional microand nanopatterning tools and techniques. The origami method of fabrication is a two-part process in which two-dimensional (2D) membranes are first patterned and then folded into the desired 3D configuration. This thesis presents an origami fabrication method based on the use of SU-8 membranes and elastic gold hinges. Magnetic actuation, stress-induced folding, vertical spacing, and lateral alignment of the membranes are discussed. This thesis also reports on the used of the Nanostructured OrigamiTM process to create a functional electrochemical energy storage device. An electrochemical capacitor, or a supercapacitor, is selected because its performance can be readily improved by the addition of 3D geometry and nanoarchitecture. In addition to improved performance, the origami fabrication method allows such devices to be integrated into preexisting MEMS and IC processes, thus enabling the fabrication of complete microand nanosystems with an integrated power supply. The supercapacitors were created by selectively depositing carbon-based electrode materials on the SU-8 membrane and then folding the structure so that oppositely-charged electrode regions face each other in a 3D arrangement. The fabrication process, electrochemical testing procedure, and analysis of the results are presented. Thesis Supervisor: George Barbastathis Title: Assistant Professor
منابع مشابه
Comparison of Binary and Ternary Compositions of Ni-Co-Cu Oxides/VACNTs Electrodes for Energy Storage Devices with Excellent Capacitive Behaviour
Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...
متن کاملKinematics and Dynamics of Nanostructured Origami
Two-dimensional (2D) nanofabrication processes such as lithography are the primary tools for building functional nanostructures. The third spatial dimension enables completely new devices to be realized, such as photonic crystals with arbitrary defect structures and materials with negative index of refraction [1]. Presently, available methods for threedimensional (3D) nanopatterning tend to be ...
متن کاملA Numerical Simulation of Vanadium Redox Flow Batteries
The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...
متن کاملOrigami lithium-ion batteries.
There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such t...
متن کاملLipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed 'lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005